

Petroleum Geomechanics

The Importance of Anelasticity

Grant Hocking

Presentation to Massachusetts Institute of Technology January 2017

Presentation Overview

Anelasticity

- Linear elastic vs anelastic
- Superposition with explicit path dependence
- Analytical solutions
- Better behavior & mechanistic insight

Applications

- Drilling, mud weight, frac gradient, wellbore stability.
- Sonic log & formation evaluation
- Mechanical earth model
- Initiation, breakdown & propagation of hydraulic fractures and interaction with natural fractures
- Stress shadow effects Zipper fracs

Conclusions

Anelasticity

$$\eta = \frac{E'}{E} = \tan\phi$$

For small losses

$$\eta = \phi = \tan \phi = \frac{\delta}{\pi} = \frac{\psi}{2\pi} = Q^{-1}$$

Hysteresis strain lags stress lost energy

Q – **Quality Factor**

Q=3 33% energy loss over load/unload cycle

<u>Anelasticity</u>

Anelasticity Q Factor

 Energy lost over load/unload cycle divided by total energy

Acoustic/Seismic Attenuation Q_a Factor

 Energy lost per radian divided by average energy, for Q_a>20, Q=Q_a, at low Q_a, Q≈0.6Q_a

Q=3³33% energy lost over load/unload cycle

Dry Sands/Weak Sandstones

Q_a≈5 i.e. Q≈3 Quality Factor, being a 33% energy loss over load/unload cycle

Fluids, porosity, permeability, fractures all affect Q_a , as does the mineral composition.

© GeoSierra 2016. All rights reserved

<u> Anelasticity – Q Factors</u>

Anelasticity – Analytic Solutions

Analytic Anelastic Solutions

- Viscoelastic with minimal time constant
- Superposition path dependent

Pressurized Borehole

Airy Stress Function:

$$\varphi = \frac{p_i}{2(1-\beta)} \left(\frac{a}{r}\right)^{2\beta} r^2$$

Pressurized Borehole

Stress at infinity p_o:

$$\sigma_r = p_o + (p_i - p_o) \left(\frac{a}{r}\right)^{2\beta}$$
$$\sigma_\theta = p_o + (p_i - p_o)(1 - 2\beta) \left(\frac{a}{r}\right)^{2\beta}$$

© GeoSierra 2016. All rights reserved

<u>Anelasticity – Linear vs Anelastic</u>

<u>Linear Elastic</u>

- Analytical solutions available
- Superposition path independent
- Q<20 invalid model, large errors

<u>Anelastic</u>

- Elastic but not linear, simple model
- Superposition path dependent
- Superior behavior & mechanistic insight

Analytic Anelastic Solutions

- Circular, elliptical & crack
- General stress state at infinity
- Pressurized

Slide 8

Shear Strain

<u> Anelasticity – Drilling Mud</u>

Drilling Mud Impact vs Q

- Non-penetrating fluid
- Mud pressure on borehole circumferential stress

<u> Anelasticity - Borehole</u>

Unixial Stress at Infinity – No Pressurization

<u> Anelasticity - Borehole</u>

Mechanical Earth Model

- Linear elastic
 - large errors in $\sigma_{h max}$
 - misinterpret of sonic logs
- Anelastic model essential for Q<20

<u> Anelasticity - Borehole</u>

Pressurized Borehole – Zone of Influence

<u>Hydraulic Fracturing – Gelatin</u>

Ballistic Gelatin

- Foam injected through vertical tube
- Same gelatin but at different temperatures

Cold Gelatin Q=6

Warm Gelatin Q=3

<u>Anelasticity – Frac Initiation</u>

Low Q Factor Formations – Frac Initiation

- Hydraulic fracturing fluid can't induce tension
- Need to initiate tension to generate frac
 - Slotting, shape charge, sleeve frac, etc.
- Frac propagation plane more azimuth stable

High stress contrast required to divert frac from azimuth

Slide 15

<u>Milk River Tight Gas Reservoir</u>

Non-Brittle Weak Formation

- E~3GPa c'~2.5MPa φ~35° UCS*~10MPa
- 40,000 wells conventionally stimulated
- CO₂ fluid 20/40 sand 10tons/horizon
- Surface & Downhole Tiltmeter Arrays
- Injection Pressures ↑~40% at <400m depth
- Vertical 'Fracs' >400m Horiz 'Fracs' <400m
- Stress Crossover at 400m

<u>Note:</u> UCS*=2c'tan(45+ φ/2)

© GeoSierra 2016. All rights reserved

Conventional Stimulations

Slide 17

Conventional Stimulations

Slide 18

© GeoSierra 2016. All rights reserved

Split Dilating Casing Stimulations

Slide 19

<u>**Anelasticity – Frac Initiation**</u>

Low Q Factor Formations

- Hydraulic fracturing thru' perfs
 - fluid can't induce tension no frac
 - vertical bulbous cavity expansions
 - horizontal fracs with σ_v not minimum
- Need to initiate tension to generate frac
 - Slotting, shape charge, sleeve frac, etc.

Experience – no Prod Enhancement

- Milk River tight gas reservoir
- Lower Stevens turbidites light oil
- Turbidites with higher clay content
 - edge of fan or diagenesis

Short Bulbous Cavities

<u> Anelasticity – Zipper Fracs</u>

Pressurized Fracs – Stress Shadow Effects

<u>Anelasticity – Zipper Fracs</u>

Pressurized Fracs – Stress Shadow Effects

<u>Conclusions</u>

<u>Linear Elastic</u>

• Q<20 invalid model with large errors

Anelasticity

- Elastic but not linear, simple model
- Analytic solutions available
- Superposition path dependent
- Superior behavior & mechanistic insight

Application

- Most shale source & clay rich reservoir plays
 - Drilling, sonic logs, MEM, formation evaluation
 - Frac initiation & propagation
 - Stress shadow effects

Slide 24