Thermal Enhanced Bitumen Recovery

Conventional SAGD
- Reduced Steam Pressure
 - Shallow depth, Caprock integrity, Outcrop proximity
- Geological Issues
 - Vertical Perm, Shale barriers, Lean zones

Conventional CSS
- Geological Issues
 - Bottom water, Caprock integrity, Top gas

Single-Well SAGD
- Engineer around Geology
 - High permeable propped vertical planes
 - Operate in SAGD mode
Weakly Cemented Formations

Hydraulic Fracturing
- Conventional
 - Strong, Hard Rocks – Brittle Fracture
- Frac & Pack
 - Weak, Soft Sediments – Ductile Process

Weakly Cemented Formations
- Minimal Cementation, Soft & Weak
- Stress State
 - Force Chains Fragile
 - Easily Destroyed
 - Minor Vibration or Shearing
 - Grain Contact Dissolution
 - Over-Pressurization
 - Minimal Formation Stress Contrast
 - Stress Contrast can not be maintained over geological time
- Constitutive Behavior
 - Ductile Frictional Behavior
 - Anelastic
Early Field Trials of Azimuth Control

[Images of field trials with labels: Plane Coalescence Beneath Surface and Plane Orientated Along Required Azimuth (String Line)]
Azimuth Control Initiation Devices

Single Azimuth Tools

<table>
<thead>
<tr>
<th>Prototype</th>
<th>1st Generation</th>
<th>2nd Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Azimuth Control Iron Propped Planes

Corrected Horizontal Distance (ft)

Resistivity (Ohm)

Inclined Wall Thickness interpreted to be approximately 4.8-inches
Multi-Azimuth Vertical Planes

Each individual Plane Initiated & Propagated by Dedicated Tubing

Diametrically Opposite Cavities are Dilated to Initiate Azimuth Controlled Vertical Planes
Milk River Tight Gas Field Trials

- 100km
- Alberta, Saskatchewan
- Four (4) propped wings
- 4-1/2” J55 Casing
- Shoreline Anisotropy
Single-Well SAGD System

Operated in SAGD Mode
- no startup
- shallow or deep

Top Pay
Bottom Pay
Sump
Injector
Producer
Single-Well SAGD Completion

Legend
- X-Drain Casing
- Orientating Mule Shoe
- Cementing Shoe
- Slotted Liner

Casing
- 9-5/8”

Liner
- 7”
- Blanket Gas
- Produced Liquids 2-7/8” or 3-1/2”
- Steam 4-1/2” VIT

Composite
- Epoxy
- Ceramic

Completion
- Slotted Liner
Thermal Simulation Model Idealization

TRS-Thermal Simulator
Athabasca Bitumen
Sp=1,750kPa and 1,200kPa
Gas saturation (vpp_22.5deg_1200_50_56)

Athabasca Bitumen
Sp=1,750kPa

Time = 1e-006 days
Single-Well SAGD in Channel Sand

Athabasca Bitumen
Sp=1,750kPa

Slide 113
4x Single-Well vs Conventional SAGD

Athabasca Bitumen
Sp=1,750kPa

Slide 14
Single-Well SAGD Clean-Dirty Sands

Athabasca Bitumen
Sp=1,750kPa
Single-Well SAGD Shale Barrier

Oil Production Rate (bbl/day)

Cummulative Oil (MMbbl)

Cummulative SOR

Time (days)

Clean Sand
Kv=2D
Barrier Holes
K=200mD
Barrier Holes
K=20mD

Athabasca Bitumen
Sp=1,750kPa
Permeable Lean Zone

Water Saturation

Temperature 0.1 day

Temperature 1 day

Temperature 6 days

Temperature 30 days

Temperature 90 days

Permeable lean zone

Athabasca Bitumen
Sp=1,200 kPa
Reservoir temperature (vpp_30deg_1200_50_86_mackay_h=30a)

Athabasca Bitumen
Sp=1,200kPa
Conclusions

• Process not depth limited

• Reservoir simulations indicate performance almost invariant of geology

• As built issues
 – Skin between coalesced vertical planes
 – Permeability of planes needs to be high
 • In placed permeability
 • Maintain permeability over time
 – Steaming trials required to quantify issues

Acknowledgements
Dale Walters, Taurus Reservoir Solutions for reservoir simulations
Suncor, for access & field support of Milk River trials