



#### SPE165433

# Vertical Single-Well SAGD with Multiple Producers

Grant Hocking<sup>1</sup> and Dale Walters<sup>2</sup>
<sup>1</sup>GeoSierra, <sup>2</sup>Taurus Reservoir Solutions



### Frac Enhanced SAGD

**Single-Well SAGD** 



Hz open-hole stimulation





**Unconsolidated Formations** 







# **Azimuth Controlled Fracturing**

Slide 4





### **Non-Brittle Weak Formations**

### **Weakly Cemented Formations**

- Minimal Cementation, Soft & Weak
- Stress State
  - Force Chains Fragile
    - Easily Destroyed
    - Minor Vibration or Shearing
    - Grain Contact Dissolution
    - Over-Pressurization
  - Minimal Horizontal Stress Contrast
    - Horizontal Stress Contrast can not be maintained over geological time
- Constitutive Behavior
  - Ductile Frictional Behavior
  - Anelastic
  - Skempton's B parameter

# Isotropic Compression Force Chains Shown



### Force Chains Destroyed



**Minor Shear Strain Destroys Force Chains** 



# Offset Well Stimulation Comparison

#### **Perforations**



#### **Dilating Casing**



#### Milk River





## Milk River Tight Gas Reservoir

#### **Non-Brittle Weak Formation**

- E~3GPa c'~2.5MPa φ~35° UCS\*~10MPa
- 40,000 wells conventionally stimulated
- CO<sub>2</sub> fluid 20/40 sand 10tons/horizon
- Surface & Downhole Tiltmeter Arrays
- Injection Pressures ↑~40% at <400m depth</li>
- Vertical 'Fracs' >400m Horiz 'Fracs' <400m</li>
- Stress Crossover at 400m





Note: UCS\*=2c'tan(45+ φ/2)



# Milk River Tight Gas Reservoir

### **Stimulation Split Dilating Casing**

- Cemented by Inner String
- Mechanically Split & Expanded
- 10% Radial Strain
- Locked in Open Position
- Multiple Wings intersect Formation Shoreline Anisotropy









#### Slide 9

### **Conventional Stimulations**





# **Split Dilating Casing Stimulations**







### **Lessons Learnt**

- Completion Method Controls the Outcome
  - How do you interpret stimulation and shut-in pressure records?
  - Mapping injected geometries only tells you of the outcome
  - Stimulation thru' perfs or open-hole do not excite least energy dissipating mechanism
  - Frac initiation is essential
- Why? Non-Brittle Weak Formations
  - Anelasticity
  - Skempton's B Parameter



# **Brittle Ductile States**

Hubbert & Willis (1957)





# **Anelasticity**





**Hysteresis strain lags** stress lost energy

Loss Factor 
$$\eta = \frac{E'}{E'} = \tan \phi$$

$$\eta = \phi = \tan\phi = \frac{\delta}{\pi} = \frac{\psi}{2\pi} = Q^{-1}$$



**Dry Sand/Weak Sandstone Q=5 Quality Factor** 

# **Anelasticity - Cylindrical Cavity**

### Field Stress $p_0$ compression +ve

#### **Linear Elastic**



$$\sigma_r = p_0 + \Delta p$$

$$\sigma_{\theta} = p_0 - \Delta p$$

# Shear Stress **Shear Strain**

$$\tau = \alpha \gamma^{\beta}$$

$$\tau = \alpha \gamma^{\beta}$$

$$\alpha = G_s \gamma_s^{1-\beta}$$

**Bolton & Whittle (1999)** 

#### Non-Linear Elastic

$$\sigma_r = p_0 + \frac{\alpha}{\beta} \gamma^{\beta}$$

$$\sigma_{\theta} = p_0 - \alpha \left( 2 - \frac{1}{\beta} \right) \gamma^{\beta}$$

| β=0.5  | Q=3  | η=0.3 |
|--------|------|-------|
| β=0.65 | Q=5  | η=0.2 |
| β=0.8  | Q=10 | η=0.1 |



# **Inclusion Tip and Mobility**





#### **Skempton's B parameter**

- >0.75 at low p'
- >0.5 at high p' at significant depth

#### **Inclusion Tip Mobility & Geometry**

- negative pore pressure in front of tip
- inclusion clamped by apparent cohesion
- inclusion sucked into the unloaded zone
- remains on azimuth due to anelasticity





# **Inclusion on Azimuth - Anelasticity**



Process zone grows with inclusion length due to anelasticity resulting in a more robust propagating inclusion remaining on azimuth

Propagating inclusion remains on azimuth even with modest stress contrasts



Anelasticity, Skempton's B parameter – no mention of plasticity



# **Conventional Stimulations**







vertical



### **Split Dilating Casing Stimulations**









### **Well Construction Sequence**

#### **Operated in SAGD Mode**

- no startup
- invariant of geology







# **Single-Well SAGD Completion**





### Single-Well SAGD vs Vert Perm



#### SAGD

$$q \propto \sqrt{k_v}$$
 $t \propto \frac{1}{\sqrt{k_v}}$ 

Athabasca Bitumen Sp=1,750kPa



### **Reservoir Idealization**



High confidence in reservoir simulations due to minimal dependence on vertical perm



# Single-Well SAGD vs Conv SAGD





# Vertical Single-Well SAGD with Multiple Producers











### **Frac Enhanced Conventional SAGD**



- Simpler & more reliable to operate
- SAGD mode at startup
- Engineer around geology
- Quick re-startup
- Operate at low pressure
- Flow conformance assured





### Frac Enhanced SAGD @ Firebag





### **Conclusions**

- Stimulation completion dictates the outcome
  - Mini-Frac thru' perfs or open-hole suspect in non-brittle weak formations
  - Essential to initiate frac in non-brittle formations
  - Need to re-assess earlier stimulation data & experience
- Process not depth limited, strength limited
- Frac SAGD performance ~invariant of geology
- Frac enhance best geology first, not poorest
  - Highest ROI, best sustainable and environmental practice
- As built issues
  - Permeability of planes needs to be high
  - Demonstrate azimuth control of planes from Hz wells
  - Steaming trials required to quantify performance

