SPE-157739
Single-Well SAGD Field Installation and Functionality Trials

Grant Hocking*, Travis Cavender†, John Person† and Tim Hunter†
*GeoSierra †Halliburton
Thermal Enhanced Recovery Methods

Conventional SAGD
- Reduced Steam Pressure
 - Shallow depth, Caprock integrity, Outcrop proximity
- Geological Issues
 - Vertical perm, Shale barriers, Permeable lean zones

Conventional CSS
- Geological Issues
 - Bottom water, Caprock integrity, Top gas

X-Drain Single-Well SAGD
- Engineer around Geology
 - High permeable propped vertical planes
 - Operate in SAGD mode
- Target Formations – No Recovery Method
Shallow Test Well Objectives

Primary Objectives:
• Mechanical expansion of the casing to the fully locked-open position.
• Independent wing injection of 12/20 proppant without excessive head loss or sanding off.
• Pore-pressure relief for wing coalescence.
• Packer deflation and recirculation procedures to POOH.

Secondary Objectives:
• Imaging of injected geometry by active resistivity.
 • Quantify plane coalescence by hydraulic pulse interference tests.
 • Observe azimuthal alignment of vertical injected planes by surface excavations.
Active Resistivity Image
Surface Excavation
Single-Well SAGD

Operated in SAGD Mode
- no startup
- invariant of geology
- $\text{NPV}_{10} > 2x \text{ SAGD}$
- shallow or deep

Injector
Producer

Top Pay
Bottom Pay
Sump

© GeoSierra 2012
Produced Oil
Steam Injection
Wing Length
Lines of Symmetry
1/2 Well Spacing
Modeled Region
Conclusions

Test objectives achieved:

• Mechanical expansion of the casing to locked open position
• Independent wing injection of 12/20 proppant
• Enabled pore-pressure relief for wing coalescence,
• Quantified plane coalescence from hydraulic pulse interference tests
• Observed azimuth alignment by surface excavations

Single-Well SAGD

• If planes constructed thru’ full pay height, performance virtually unimpaired by geology
Acknowledgement

The authors thank Mr. Dale Walters of Taurus Reservoir Solutions Inc. for conducting the thermal reservoir simulations of the multi-azimuth single-well SAGD system and Halliburton for permission to publish this paper.